Review: simECG: ECG Simulator v1.186

Download for Windows/Linux: Free

Developers: Antonio Cardoso Martins, Paulo Dias Costa, Joao Miguel Marques


I’ve been searching for a half-decent ECG simulator since last year, but hadn’t found one that costs less than “more than I have”, so I was pleasantly surprised to find the rather unnecessarily named simECG: ECG Simulator for free, on Windows and Linux.

simECG offers a number of functions in its current version. The operator can select from a series of common arrhythmias at the click of a button, and observe the associated waveform on the display. Unfortunately, only a handful of options are actually selectable, at present, with the others showing as greyed out, presumably, as with many Open Source programs, until they are finalised by the development team.

simECG screen 2 (2)

The custom settings tab provides the means to alter each area of the trace individually, adjusting heart rate, P wave amplitude/duration and more, and watching the displayed trace change in real time. The program hints at future save/load functions for your altered settings, too, which will be a nice inclusion for educators to make use of.

simECG screen 1

All of the aforementioned are easy to use and clearly marked, even if there aren’t currently all that many of them.

The option exists to change the background between ECG paper and a monitor screen, although the ECG paper skin is purely cosmetic. It would have been nice if the paper option was more in correlation with the amplitudes and durations selectable in the readout options. Greyed out sections of the “preferences” tab hint that calibration will soon be able to be changed by the user, so it would be preferable for beginners and students if these proposed calibration options had a realistic background to use in conjunction with the created trace.

simECG screen 4

I couldn’t find an option to reset the trace at all, even in a greyed out form, and as a result, returning to the default custom settings is something of a chore. Hopefully this is something the developers will consider including in future iterations.

By now you may have noticed the appearance of the waveforms in the above trace. The trace waveform was one of the first things I noticed, as the whole thing doesn’t look right. The P and T waves look malformed, with the latter presenting almost as though the patient was displaying hyperkalaemia despite this being labeled as a normal sinus ECG.

simECG screen 3

The assessment quiz tab gives the user an opportunity to identify 10 rhythms in 60 seconds. It’s fun, sure, but given the odd appearance of the waveforms, it becomes a case of memorising the traces present in this program alone, as they aren’t all applicable to real life.

I’ll be honest, it’s hard to criticise something that the developers admit will “never be finished” due to its Open Source status, but the nature of this website and Open Source in general means it pays to remain objective. In actuality, whilst I have highlighted a few issues, the fact that this tool is ever-evolving and totally free, means I can only commend the development team for their ethos and hard work.

Martins, Costa and Marquez state their belief that education shouldn’t be a corporate tool, or purchasable commodity, rather it should be accessible to all. The more people there are to flag issues, the better an idea the team can have of what functionality to add, what bugs to fix, and what other changes are felt to be necessary by users. Despite being generally incomplete at present, it’s not only one to watch for in the future, but one I’d ask every cardiac physiologist to download and play around with.

Due to this version still being in the 1.n phase, I have high hopes for the future of this software, as it has great potential as a learning tool. With the addition of more options in the preset tab, further wave/interval customisation, and more accurate waveforms in general, simECG could help physiology students consolidate their knowledge without carting loads of textbooks around, making it an essential bit of kit.

Screenshot (184).png



Screenshot (39)

Virtual Reality In The Cath Lab

If you’ve kept abreast of tech news in the last few years, specifically with regard to Google Glass, you’ll probably be aware of two things: 1. it has been met with scepticism and apprehension, and 2. at present it’s largely pointless.

I’ll admit that the second point is subjective, but now, this (my) subjective view is likely to change. A team of cardiologists from Warsaw have used Glass’ virtual reality capabilities to tackle what is referred to as the “final frontier in interventional cardiology” by repairing a total occlusion of the right coronary artery.

An effective visualisation of the coronary arteries is often lacking using normal angiography radiology techniques, but by employing coronary computed tomography angiography (CTA), a smartphone app and a headset based on Google Glass, the team at the Institute of Cardiology have successfully restored blood flow in the right coronary artery of a 49y/o male, with two drug- eluting stents.

“This case demonstrates the novel application of wearable devices for display of CTA data sets in the catheterization laboratory that can be used for better planning and guidance of interventional procedures, and provides proof of concept that wearable devices can improve operator comfort and procedure efficiency in interventional cardiology,” says lead investigator Maksymilian P. Opolski, of the Department of Interventional Cardiology and Angiology at the Institute of Cardiology, Warsaw.

The set up itself projects the three- dimensional CTA images onto the Glass-based head mounted display via a mobile app featuring voice command and a zoom function. The combination allows for digital viewing of the coronary artery, the occlusion and the placement of the guide wire for stent implantation. Thanks to its basis in Google Glass, the device can record video, view images and also allow the practitioner to see the surrounding environment, simultaneously. The possibility for the lenses to be fitted with filters that protect the user from x-rays only cement this technology as one that cardiologists will look to use increasingly, after this first success.

A. Surgeon using the Glass-based monitor to view CTA images on the lens. B & C. 3D images on lens show trajectory of distal right coronary and occlusion.


Virtual Reality might not be having the impact on video games that the industry had hoped, but it would appear to be having a profound impact on healthcare.


Screenshot (39)

Ref: Canadian Journal of Cardiology, Elsevier Health Sciences

SCST National Update

Yesterday, on the 20th of November, Oli and I attended the SCST annual update meeting. It’s the first physiology conference I’ve attended that wasn’t tied to one specific trust (the last one I attended was the Royal United Hospital’s respiratory medicine conference), rather, it was applicable to and attended by cardiac scientists from across the four home nations. The day was packed with talks, networking opportunities and insight into the future of the science. Speakers hailed from a variety of professions and organisations, but all were entrenched in the science of cardiology and education.

Due to the long distance travel and Birmingham’s seemingly city-wide roadworks, Oli and I missed the introduction, but we were present for the rest of the day and we recorded and annotated everything else, so whilst I’ll provide an overview here, detailed breakdowns of everything relevant to PTP study will be supplied separately, as and when time and my coursework volume allows.

Of particular note is the information on preceptorship qualification, delivered by Sophie Blackman of SCST and Boston Scientific. I collared her after the event proper, and she kindly agreed to provide the literature pertaining to this, so as soon as it’s available, I’ll add it for you all to have a mosey over. It seems like a great opportunity for newly- qualified practitioners to become super confident in all aspects of their job, so I highly recommend that you read the contents when they’re available.

Dr Patricia Oakley of King’s College outlined the plans for a new variety of health clinic: the centre that isn’t home and isn’t a hospital, but the “place in the middle”. These will be networked, multidisciplinary centres, featuring social workers, scientists, psychiatrists, GP’s, etc, so cardiac physiologists will most likely be a necessity in their implementation. The whole session really drove home the emerging importance of this profession, but also the requirement of all of us, student and qualified, to ensure that the cardiac physiologist is recognised as being at the forefront of innovation so as not to be overlooked. It was mentioned more than once, that if we don’t put ourselves forward for emerging structures, someone else will.

Dr Oakley told of the need to reduce treatment variability by region. Her example was the treatment of amputation as a result of diabetes; Devon has, by far, the highest number of below-hip amputations when compared with the rest of the UK, due to the fact that the majority of Devonian surgeons trained under a surgeon who has a penchant for this level of removal. The advent of these networked clinics will reduce this level of variability and promote consistency across the home nations.

The president of the AHCS, Dr Brendan Cooper delivered the final talk of the day, discussing the future role of the healthcare scientist in wider healthcare and medicine, and the need for physiologist prescribing. I’ll provide  a detailed breakdown of this talk next, and shall hopefully post it in this coming week.



Screenshot (39)


Interview With A Distance Learner

The fact that this specialist degree exists primarily in universities is a relatively new event; before the shakeup by Modernising Scientific Careers, the majority of training was completed in-house with an element of distance learning thrown in to assist with the theory behind the practical concepts.

As physiological science makes the transition to a 100% university- led discipline, there remain students that are still learning the “old way”. Sarah is one of those people, and I had the pleasure of working with her this year during my rotations between respiratory medicine and cardiology. In order to get a bit of insight into exactly how the course differs between bases, she kindly agreed to be interviewed for TSP.


Hello Sarah! Could you outline the structure of your week, with regards to working in your department and studying the degree simultaneously?

I’m employed by the hospital, so have to work my set hours which are Monday – Friday 08.30-16.30. Although I’m studying, I am not employed as a student, rather, I am an Assistant Technical Officer, which basically means I help around the department doing admin, portering and some clinical work. I have certain responsibilities with regards to admin that I have to keep on top of regardless of what clinical work I need to be learning.

Monday is my main admin day, so I spend the entire day sorting through referrals, checking messages & booking appointments for certain procedures that only I book. I need to keep on top of this as some of the procedures have extremely long waiting lists, so if a patient cancels last minute I need to try my best to fill that slot. Once my admin is complete I normally help out my colleague in the office with some of her work load. If there is no porter to bring inpatients up & back for echocardiograms then it is part of my job to do this as well, which means I can’t get my necessary admin work completed.

Tuesday is the start of my clinical week, unless I have been portering the previous day. At the moment I am spending all day Tuesday in analysis, analysing 24 hour and 48 hour tapes. I am able to analyse a tape independently, but as I am still learning they all need to be checked after, just in case I’ve missed something or worded my report incorrectly.

Wednesday is a half day in the department for me as I have a collaborate session starting at 12.00 so I need to be set up in the library ready to start. After my collaborate session I catch up on any studying I need to do, such as looking over lectures that have been released for the following week, researching/ writing an assignment or revising for upcoming exams. On a Wednesday morning I will either be fitting ambulatory blood pressure monitors (supervised, as I am not confident to do them alone yet) or analysing.

Thursday mornings I am in Electrocardiography, either in the department or going down to the ward, and in the afternoon I analyse.

Friday mornings I do tape clinic which occupies the entire morning and keeps me very busy, especially if I have patients returning that have had symptoms of dizziness & I need to get the tapes checked before I can let them go. I spend Friday afternoons in analysis.

That is my current working week, but I will start going on the rota soon to sit in on exercise treadmill tests as well. Most mornings I get into work at around 07.30 so I can get some studying done before work and I try to do an hour or so in the evening as well. Most weekends I keep to myself, but if I have an assignment due or exams I will do a couple of hours each day.

That’s a hectic week. This might now be a silly question, but do you feel that this is this enough?

In terms of clinical exposure … yes! But it is very hard to keep up with the academic work load when there is very little time to fit things in. I commute for over 2 hours a day so this eats into my potential study time, but I try to keep a balance of work, study and actually having a life!

Do you feel that working in the same department as you study helps you to learn more and keep you motivated?

I feel that second year especially has helped me learn, but most of the academic work in our first year wasn’t particularly relevant to cardiology. I feel like I learnt more in the last 2 months from analysing tapes than I have in the whole 2 years that I’ve worked in the department. I definitely think it has helped to keep me motivated as I’m constantly surrounded by people that are doing the job I am training for, so I’ve got a clear goal at the end of it.

You’re one of the last sets of the distance intake. Do you think, if you had the choice, you’d still do the degree in the manner you currently are, or would you choose to be based at the university?

I’ve already done a previous degree so I’ve experienced the whole student life thing, so I’m not missing out by doing it this way. At the moment I am essentially being paid to learn, which is ideal. I wouldn’t be able to afford to do this degree if I was based at the university, as I’ve already had a student loan so I’m not entitled to another. I think I get a good amount of exposure in the clinical setting, but I just have to do some of the boring admin jobs to make up for it. At the end of my degree I will have a job and I know 100% that this is the career I want for myself. I wasn’t passionate about my previous degree subject so I lost interest and didn’t want to spend the rest of my life doing it, whereas I know from working in this department and from studying the way I am, that this is what I want to do. I don’t think I’d have that level of clarity if I was based more at the university than the hospital.

That’s fair. When we worked together during my placement, I was aware of the fact that you were much more comfortable in the clinic environment than I was (obviously), so what do you feel we at the university have by way of an advantage?

I definitely think that as I’m exposed to patients and the environment all day every day that I am more confident and comfortable than yourself, but I would say that full time students based at the university have a lot more academic knowledge. We have 1/2 hours a week of contact time with our lecturers so we need to go out and research ourselves, whereas it is clear that you guys have a lot more academic time although you miss out a lot with the lack of placement.

Thanks, Sarah!

As you can probably tell, despite the fact that Sarah and myself are in the same cohort, our academic years have a vastly different focus. As I (rightly) assumed just from working with her on the department, both routes present their pros and cons, and seeing as this is a vastly understaffed form of diagnostic science, it does, in my opinion, open the career up to a greater number of people now it will be university- led.

If you’ve got an opinion, or a question regarding anything you’ve read, sound off in the comments below.

Photo courtesy of Facebook

Screenshot (39)

The Lewis Lead

Scouring the web for cheap textbooks, I happened upon something of which I wasn’t even remotely aware: alternate ECG lead placements. As has been highlighted in previous posts by myself and others, cardiac scientists have strict guidelines that ensure we perform an ECG procedure to an accurate and repeatable standard, so it came as a bit of a surprise to discover that there existed a different way of carrying out the test with an aim to view specific activity.

The Lewis lead, named after Sir Thomas Lewis, is an alternate placement that can be used to better view atrial activity in relation to that of the ventricles. In many ECGs, it can be rather difficult to assess P waves; whilst they are represented using standard lead configuration, they are much less apparent than ventricular activity, due to the nature of the ECG’s detection mechanisms.

Using the Lewis lead configuration, it is possible to increase the detection of atrial activity and diminish that of the ventricles and gain a clearer picture of atrial fibrillation, flutter and, in the case of the article that brought my attention to this system, improving P wave recognition in wide QRS complex tachycardia.

The configuration is as follows:

Lewis Lead

  • RA electrode on the manubrium
  • LA electrode on the 5th IC space, right sternal border
  • LL on the right lower coastal margin
  • RL remains in the standard SCST position
  • Adjust calibration to 20mm/mV

As shown on the diagram, a three lead configuration is still present, as in Einthoven’s triangle, but Lead I now travels directly over atrial activity. For this reason, Lead I is used as the monitor lead and the one from which a rhythm strip should be taken.

On the trace itself, there is a marked visual difference. The following were recorder on the same patient and we begin with the standard electrode configuration:


And now introducing the Lewis lead setup:


s5-atrial-leads-iiThe P waves present in these altered leads are much more pronounced.

There are more lead systems that are used in the diagnosis a variety of different conditions such as Brugada syndrome. I’ll research and cover these and try to get some more traces using the Lewis lead system throughout the year.

Traces courtesy of

Screenshot (39)

How Is Your ECG Electrode Placement?

As a student cardiac physiologist it has been drilled into our heads from an early stage the importance of correct anatomical electrode placement in obtaining an accurate ECG recording. An ECG measures the electrical activity of a patient’s heart from many different angles, and is achieved by placing 10 sticky electrodes on the patient; four on the limbs and six on the chest. For correct electrode placement we follow the clinical body guidelines set out by the our governing body, the SCST. As specialists within the field, we have a duty to perform these tests in a standardised, methodical manner to produce reliable and accurate diagnostic information, as the ECG is the first port of call when assessing heart abnormality.

Screenshot (17)

Unfortunately, from my experience, and from that of my colleagues, the misplacement of these electrodes has become somewhat commonplace. To the unassuming operator this may seem superficial but incorrect placement of electrodes can alter the ECG patterns displayed simulating or concealing abnormalities, such as myocardial ischemia/infarction.

There is evidence that many health professionals who record ECG’s have not been suitably trained or assessed in the technique: A study by Kings College London into electrode misplacement highlighted that only 50% of nurses and less than 20% of cardiologists correctly place leads V1 and V2 during a standard 12-lead ECG. These numbers are quite shocking and highlight the widespread misunderstanding of this key diagnostic tool.

An example of how NOT to perform an ECG. V1 and 2 are incorrectly placed, as are 3 and 5.

I personally witnessed an example of this whilst on my first week of placement. I was performing an ECG on a patient within the cardiac ward under the supervision of an assistant technical officer who regularly performs ECGs. I correctly located the anatomical landmarks on the patient’s chest and applied the electrodes, as per the official guidelines. At this point, the ATO interrupted me and challenged the placement of my V1+V2 electrodes, stating they were too low. She then took over control of the procedure and removed the electrodes. She began to count the intercostal spaces, beginning from the clavicle. The guidelines state the operator should identify the manubriosternal joint, or angle of Louis, on the patient to locate the second intercostal space as their first anatomical landmark. This subsequently meant her V1 and V2 electrodes were placed too high and  my original placement was in fact correct. After the procedure I challenged my colleague about this explaining we were taught to follow the SCST guidelines in our electrode placement. The ATO responded by saying that this was “how they had always done it.” I discussed this with my clinical educator and the issue was later addressed with my colleague.

The consequence of incorrect ECG recording can lead to potentially incorrect diagnoses and inappropriate treatment leading to wasteful use of healthcare resources and even cause harm to patients. Evidence suggests that adequate training of operators reduces ECG recording errors. However as the SCST highlights in their guidelines, the indications there is little awareness in many practitioners of the need for training.

Clearly, the solution to this issue is to increase awareness in health professionals exposed to ECG practice about the importance of correct electrode placement.  This could be achieved by increased collaboration between cardiac physiologists and other healthcare professionals. As specialists within the field we have duty to share our expertise and knowledge to ensure our patients receive the best standard of care. As a profession we should be much more active in teaching and increasing awareness of what we do and why it is so important. Relevant staff should be confident in performing ECGs not because of experience, but due to high quality training and continual auditing.

To achieve this I feel our profession needs to embrace this responsibility and be far more active in the support and training of other health professionals.

Khunti, K. (2013) Accurate interpretation of the 12-lead ECG electrode placement: A systematic review. Health education journal . 73 (5) pp. 610-623.

Harrigan, H., Chan, TC., Brady, JW. (2012) Electrocardiographic Electrode Misplacement, Misconnection, and Artifact. The Journal of Emergency Medicine [online]. 43 (6), pp. 1038–1044.

Baxter, S, Blackman, S, Breen, C, Brown, C, Campbell, B, Cox, C, Eldridge, J, Hutchinso, J, Rees, E, Richley, D, Ross, C. Society for Cardiological Science and Technology (2014) Recording a standard 12-lead electrocardiogram. Available from:

Screenshot (39)

Have You Ever Tested A Robot? Pt II

I still haven’t.

Bear with me, though, as this is going somewhere, I swear.

After the last session, in which I provided the robot’s voice and controlled its HR and ECG, it dawned on me that as a result, everyone had the opportunity to be filmed performing the test and gain valuable group feedback, except me.

I wasn’t the only one to notice this, as it transpired.

During a subsequent lab session, wherein we practiced manual BP, honed bedside manner, discussed contraindications and compared different methods of BP measurement, it was revealed that the remainder of our ECG feedback period would be completed in the lab. We no longer had immediate access to the simulation mannequin, so thanks to a willing volunteer, another of my colleagues was able to complete the procedure and again receive feedback in a partitioned area of the lab.

Then it was my turn to step up to the plate.

I was the last to ‘go’, as it were. The difference between my assessment and the other’s lies in that everyone else enjoyed an element of seclusion: the curtains around the bed-space being pulled in the first session and the high walls that separated one section of the lab from the other, in the second. The rest of the group stayed outside of these boundaries in everyone else’s case. Not for me, though. I stood away from the couch, preparing to make my entrance to the imaginary treatment room I could see in front of me and just before I could open the invisible door, the consultant physiologist taking the session said “Wait, I’m just going to call everyone else in, if that’s ok?”

“…If that’s ok”, as if I had a choice.

Everyone else filed in. They kept filing in for what felt like an age. My lecturer, the rest of my class and the head of physiology. Then, they all looked at me, waiting.

I’m not sure how I’d have fared if I’d known this was going to be the format for my peer assessment, but I feel no shame in admitting that I don’t remember ever being as scared as I was before I started moving. I didn’t know how to begin, so I just went for it. I walked into the ‘room’ (after, somewhat embarrassingly, opening the invisible door) and performed the test as I would out on placement.

I asked all the required questions and added one or two patient identifiers to account for the fact that I didn’t call my patient from any waiting room and gained a consented, accurate trace.

Not only did I do it all with the eyes of more than a couple of people scrutinising my every move, I did it with a piece of equipment I have never used before and the most tentacle-like cable configuration I’ve ever seen in my life- if you’ve tried to untangle the wires behind your television when you’re moving house, you’ll know what I mean but, trust me, this was worse. In addition, I managed to ignore a completely new experience: the fact that I was so scared that the back of my neck was sweating..!

Fear is natural. It’s normal to be scared of doing something that’s relatively new to you, especially when you know you’ll be watched and judged doing it. Whatever ‘it’ is, it wouldn’t feel like a real achievement if we didn’t feel fear beforehand. I’m glad it was sprung on me, if I’m honest. My final assessments and various practical examinations for the rest of my career will follow this format so it’s good to have a grasp on some of the emotions I’ll be feeling before them. If you’re just beginning the PTP programme, you’ve got things like this to look forward to, so just try to enjoy it. Realise that the fear of these things is normal and, most importantly, the sooner you take a deep breath and swallow the lump in your throat, the sooner they’ll be over!


Screenshot (39)

Hydrogels As An Alternative To Reperfusion And Transplant.

“Cardiac failure is a critical condition that results in life-threatening consequences. Due to a limited number of organ donors, tissue engineering has emerged to generate functional tissue constructs and provide an alternative means to repair and regenerate damaged heart tissues.” 

Such is the sentiment from Ali Khademhosseini and a team from Massachusetts. In fact, they reported here, that in 2009 an average of 77 U.S. citizens underwent transplant each day, but 20 died as a result of a lack of organ availability. The aim, then, in the absence of treatment, is to repair the damaged organ in-situ so as to negate the need for transplant at all.

Enter hydrogels.

Hydrogels are already used in the regeneration of a variety of tissues, and combined with some of the brightest minds in the field significant advances are being made in regenerative medicine: in May this year a team in Toronto have successfully repaired brain tissue after stroke and partially reversed blindness. These versatile substances are also used in disposable nappies, silica gel and contact lenses, so there’s a high chance you’ve already been exposed to them without even knowing it!

These polymers exhibit many desirable characteristics in regenerative medicine. They are relatively easy to synthesise, they can act as solute transports/drug-delivery systems, exhibit elastic properties as well as preventing thrombosis. Their structure also enables them to create a “scaffolding” for cells.

This last point is crucial when combined with the hydrogel’s other properties, but I’ll return to that shortly.

First, consider what happens to cardiac tissue after an acute myocardial infarction: during infarct, the oxygen supply to myocardial cells is reduced or diminished, causing irreversible cell death and necrosis around the occluded artery/arteries. The scar tissue that takes the place of the once-functioning cardiac muscle has none of its contractility and the heart is far less efficient as it once was. Cardiac output, systolic and diastolic functions are affected and whilst medication, reperfusion techniques a bit of luck regarding preserved left ventricle function all provide a better prognosis, heart failure is a serious risk and figures regarding mortality rates aren’t great: MI, specifically STEMI brings with it a 30% mortality rate, 50% of this figure dying before hospital admittance and 10-15% being re-hospitalised one year after the index event.

So, where do hydrogels come into the picture?

In the case of extreme loss of cardiac function and the inability of conventional treatment to improve the given prognosis, hydrogels provide an environment in which it is possible to introduce stem cells, growth factor, gene injection or therapeutic medication in an ‘artificial’ environment that simultaneously provides mechanical support to the infarcted area and aids in the replacement of necrotic tissue. As well as being a relatively non-invasive procedure when it comes to the injection of the treatment, the hydrogels scaffold itself is naturally degraded by the body when the process is complete.

According to another team in Massachusetts, published here, trials have shown significant success since they began in small animals, but their application isn’t as straightforward in large primates. They commenced in humans in 2008 (in an extremely truncated form), but in order for hydrogels to be viable in widespread clinical treatment, much more research is required. An example of this is that not much is known about the exchange of signals that take part in the movement of stem cells to an injured myocardial tissue post-hydrogel treatment. Optimum degradation time is a further issue in humans.

Despite these, and other setbacks, there remains great promise in hydrogels to lower global mortality rates as a result of MI. In recent years, significant advances in research are making the possibility of myocardial repair in humans an almost visible reality.


Screenshot (39)

The Best Apps For Student Physiologists

(in my opinion and predominantly found on android)

EDIT: I have added a 5th app at the bottom of the page, “Read by QxMD”.

My bus journey to university can take anywhere from 1.5 to 2.25 hours, depending on how willing the driver is to break the speed limit, so I try my best to make good use of the time available.
It can be rather cumbersome to hold a textbook when the bus is full and the constant movement makes it rather difficult to follow the words on a page, so I downloaded a few apps to help pass the time as well as study and, as you can imagine, some of them have been better than others.
So that you don’t have to spend your wages/student loan unnecessarily, I’ve decided to share those few apps that have either interested me, or helped me during the PTP programme so far.

I’ve omitted any apps that are effectively digital print textbooks, as these are often promoted in both Google Play and the App Store, costing £20-30 and are nowhere near as difficult to find as a couple of these picks.
I’m also not suggesting that you get all of these apps, either; were it not for this post, I wouldn’t have them all. Everyone learns differently, so you’ll probably need one or two at most.

All of these prices are correct at the time of posting, but if any have changed, let me know and I’ll update them accordingly.



1.) ECGsource, Cathsource, Echosource (ECGsource LLC)
 Google Play: £1.92, £2.54, £3.03
App Store:      £0.79, £2.29, £2.29

These three apps provide a great deal of content and are very reasonably priced, but ECGsource on it’s own is the app that will benefit Y1&2 PTP students the most. It contains information and analysis parameters for a very large number of pathologies, videos to help you understand key principles in ECG science and a tutorial on reading a normal ECG.
This app is a personal favourite of mine, not just for the number of arrhythmias it covers, but for the examples it gives in addition to these.
If you have an android device and you can only get one app, make it this one.

Screenshot_2015-10-05-21-09-05~22.) ECG Practical Demo (One 2 One Medicine LTD)
Google Play: Free
App Store:     N/A

This app isn’t nearly as easy to follow as ECGsource, but is still packed with content once you know what you’re doing. It also contains a rate/R-R correction tool, a set of digital calipers and an easy to use axis calculator for measurements on the go.
There is a paid version of this app available to purchase, but if you spend a couple of quid, you’ll get all the same information with better quality examples by getting ECGsource or QxMD. For the tools you get with the free version, however, you can check your answers on analysis assignments for free, making this worth a look.

I’m yet to find an app with all of these features on the App Store, but, if I’m honest, I started running out of money whilst wading through the plethora of terrible apps out there, so stopped looking.

Screenshot_2015-10-05-17-24-33~23.) 100 ECG Cases for Finals (One 2 One Medicine LTD)
Google Play: Free
App Store:     N/A

A quiz featuring (shockingly) 100 ECG Cases for you to analyse and be graded on.
Quizzes are grouped into categories such as Uncommon Arrhythmias, Supraventricular Arrhythmias, etc, so you can really fine-tune your skills in a particular area.
100 ECfF doesn’t offer any tutorials, so obviously it’s recommended that you have some knowledge from other sources before you have a go at it, but it’s made for USMLE finals, so it’s a handy thing to have as you progress.

It isn’t available on iOS, but ACLS Rhythm Quiz is the best option over on the App Store, costing £0.79

Screenshot_2015-10-05-20-42-30~24.) QxMD ECG Guide (QxMD)
Google Play: £3.19
App Store:     £0.79

Much the same as ECGsource, but seemingly optimised for iDevices, this app has everything a PTP student could need for ECG analysis and arrhythmia recognition. This great app also comes with a handy analysis tool that can you can use to check your answers when you’re practicing.


5.) Read by QxMD (QxMD)

Google Play: Free

App Store:    Free

This app is a wonderful way to tailor your journal reading experience to suit your course needs. New updates and articles are available frequently and are all viewable and searchable within the app. I have personally found this tool to be invaluable when trying to further understand the nuances of pathologies within cardiac science.

Hopefully these will help you along your programme as much as they have me.


Screenshot (39)

Are Athletes At Greater Risk Of Pacing In Later Life?

If so, what is the cause?

The Athletic Heart Syndrome isn’t indicative of any pathology in athletes, and although it is theorised that the changes the heart undergoes as a result of training, there exists no evidence of long-term effects. The athletic heart often has a resting rate much slower than that of an individual of a less active nature. This is not uncommon in physical athletes, as it has been reported that Sir Chris Hoy has a resting HR of 30bpm and fellow cyclist Miguel Indurain one of just 28..!

The cause of this is a very active vagal tone, resulting in bradycardia. As I’m certain many of you are aware, this is a condition that would almost certainly (correct me if I’m wrong) require pacemaker intervention in elderly patients, but in the case of athletes, this bradycardia is due to an increased stroke volume which means the required workload of the heart is decreased. All well and good whilst one is in training, but what if this lower HR did not ‘reset’ to within the normal parameters once training had ceased? I don’t think I’m incorrect in assuming that this would lead to the same treatment a non-athlete, former or otherwise, would receive anyway, regardless of any prior level of fitness.

There is in fact a 2007 study by Baldesberger et al, that suggests this is indeed the case.

Published in the European Heart Journal and found in full here: it is shown that there is a statistically significant increase of sinus node disease in the tested former cyclists when compared to the control group, in this case golfers.

Interestingly, I have stumbled across a British Heart Foundation- funded study run in part by the University of Manchester, that they feel suggests the increased presence of arrhythmias in athletes is due to molecular changes as oppose to increased activity in the autonomic nervous system.

The study in rodents showed a decrease in HCN4, a protein found in the mammalian SA node. In humans, a mutation in the HCN4 gene is sometimes found in patients exhibiting sick sinus syndrome and in those who display bradycardia, so the teams behind this study believe that if they can replicate the rodent’s results in humans, it will help us understand arrhythmias that endurance athletes often suffer in later life.

The published study can be found here:

I’ll answer my second question, “if so, what is the cause?” with an obligatory “je ne sais pas”, but it’s clear that we are edging ever- closer to an answer. Of course, whether that answer is due to molecular changes, or nervous ones remains to be seen.

Either way, it is stated by the team at the University of Manchester that although endurance training can have harmful effects on the heart, these effects are more than outweighed by the benefits.

As an added bonus, here is a short video by Sarah Pratt showing some common differences in an athlete’s ECG (in this case the featured athlete is the NHL’s Tobi Rieder *!*) compared with that of the rest of us. Enjoy!

As ever, if I’ve missed anything, or am just plain wrong about any part of this piece, sound off in the comments below and I’ll do my best to rectify this.


Screenshot (34)